skip to main content


Search for: All records

Creators/Authors contains: "Rastetter, Edward B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Whole‐ecosystem interactions and feedbacks constrain ecosystem responses to environmental change. The effects of these constraints on responses to climate trends and extreme weather events have been well studied. Here we examine how these constraints respond to changes in day‐to‐day weather variability without changing the long‐term mean weather. Although environmental variability is recognized as a critical factor affecting ecological function, the effects of climate change on day‐to‐day weather variability and the resultant impacts on ecosystem function are still poorly understood. Changes in weather variability can alter the mean rates of individual ecological processes because many processes respond non‐linearly to environmental drivers. We assessed how these individual‐process responses to changes in day‐to‐day weather variability interact with one another at an ecosystem level. We examine responses of arctic tundra to changes in weather variability using stochastic simulations of daily temperature, precipitation, and light to drive a biogeochemical model. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates in our model. However, responses of some processes (e.g., respiration) were inconsistent with expectations because ecosystem feedbacks can moderate, or even reverse, direct process responses to weather variability. More weather variability led to greater carbon losses from land to atmosphere; less variability led to higher carbon sequestration on land. The magnitude of modeled ecosystem response to weather variability was comparable to that predicted for the effects of climate mean trends by the end of the century.

     
    more » « less
  2. We present a framework for assessing biogeochemical recovery of terrestrial ecosystems from disturbance. We identify three recovery phases. In Phase 1, nitrogen is redistributed from soil organic matter to vegetation, but the ecosystem continues to lose nitrogen because the recovering vegetation cannot take up nitrogen as fast as it is released from soil. In Phase 2, the ecosystem begins re-accumulating nitrogen and converges on a quasi-steady state in which vegetation and soil-microbial processes are in balance. In Phase 3, vegetation and soil-microbial processes remain in balance and the ecosystem slowly re-accumulates the remaining nitrogen. Phase 3 follows a balanced-accumulation trajectory along a continuum of quasi-steady states that approaches the true steady state asymptotically. We examine the effects of three ecosystem properties on recovery: openness of the nitrogen cycle, nitrogen distribution in and turnover between vegetation and soils, and the proportion of nitrogen losses that are in a refractory form. Openness exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high fraction of ecosystem nitrogen in vegetation, resulting from nitrogen turnover that is slow in vegetation but fast in soil, exacerbates Phase 1 nitrogen losses but speeds recovery in Phases 2 and 3. A high proportion of nitrogen loss in refractory form mitigates Phase 1 nitrogen losses and speeds recovery in Phases 2 and 3. Application of our conceptual framework requires empirical recognition of the continuum of quasi-steady states constituting the balanced-accumulation trajectory and a distinction between the balanced-accumulation trajectory and the true steady state. 
    more » « less
  3. Abstract

    In arctic tundra, large and small mammalian herbivores have substantial impacts on the vegetation community and consequently can affect the magnitude of carbon cycling. However, herbivores are often absent from modern carbon cycle models, partly because relatively few field studies focus on herbivore impacts on carbon cycling. Our objectives were to quantify the impact of 21 years of large herbivore and large and small herbivore exclusion on carbon cycling during peak growing season in a dry heath tundra community. When herbivores were excluded, we observed a significantly greater leaf area index as well as greater vascular plant abundance. While we did not observe significant differences in deciduous dwarf shrub abundance across treatments, evergreen dwarf shrub abundance was greater where large and small herbivores were excluded. Both foliose and fruticose lichen abundance were higher in the large herbivore, but not the small and large herbivore exclosures. Net ecosystem exchange (NEE) likewise indicated the highest carbon uptake in the exclosure treatments and lowest uptake in the control (CT), suggesting that herbivory decreased the capacity of dry heath tundra to take up carbon. Moreover, our calculated NEE for average light and temperature conditions for July 2017, when our measurements were taken, indicated that the tundra was a carbon source in CT, but was a carbon sink in both exclosure treatments, indicating removal of grazing pressure can change the carbon balance of dry heath tundra. Collectively, these findings suggest that herbivore absence can lead to changes in plant community structure of dry heath tundra that in turn can increase its capacity to take up carbon.

     
    more » « less
  4. Abstract

    Arctic tundra consists of diverse habitats that differ in dominant vegetation, soil moisture regimes, and relative importance of organic vs. inorganic nutrient cycling. The Arctic is also the most rapidly warming global area, with winter warming dominating. This warming is expected to have dramatic effects on tundra carbon and nutrient dynamics. We completed a meta‐analysis of 166 experimental warming study papers to evaluate the hypotheses that warming changes tundra biogeochemical cycles in a habitat‐ and seasonally specific manner and that the carbon (C), nitrogen (N), and phosphorus (P) cycles will be differentially accelerated, leading to decoupling of elemental cycles. We found that nutrient availability and plant leaf stoichiometry responses to experimental warming were variable and overall weak, but that both gross primary productivity and the plant C pool tended to increase with growing season warming. The effects of winter warming on C fluxes did not extend into the growing season. Overall, although warming led to more consistent increases in C fluxes compared to N or P fluxes, evidence for decoupling of biogeochemical cycles is weak and any effect appears limited to heath habitats. However, data on many habitats are too sparse to be able to generalize how warming might decouple biogeochemical cycles, and too few year‐round warming studies exist to ascertain whether the season under which warming occurs alters how ecosystems respond to warming. Coordinated field campaigns are necessary to more robustly document tundra habitat‐specific responses to realistic climate warming scenarios in order to better understand the mechanisms driving this heterogeneity and identify the tundra habitats, communities, and soil pools most susceptible to warming.

     
    more » « less
  5. Abstract

    We use a simple model of coupled carbon and nitrogen cycles in terrestrial ecosystems to examine how “explicitly representing grazers” vs. “having grazer effects implicitly aggregated in with other biogeochemical processes in the model” alters predicted responses to elevated carbon dioxide and warming. The aggregated approach can affect model predictions because grazer‐mediated processes can respond differently to changes in climate compared with the processes with which they are typically aggregated. We use small‐mammal grazers in a tundra as an example and find that the typical three‐to‐four‐year cycling frequency is too fast for the effects of cycle peaks and troughs to be fully manifested in the ecosystem biogeochemistry. We conclude that implicitly aggregating the effects of small‐mammal grazers with other processes results in an underestimation of ecosystem response to climate change, relative to estimations in which the grazer effects are explicitly represented. The magnitude of this underestimation increases with grazer density. We therefore recommend that grazing effects be incorporated explicitly when applying models of ecosystem response to global change.

     
    more » « less